13969074155
在航母、神舟飞船、飞机等上面运用的各类金属材料,是大国重器的“脊梁”,核心部件的材料决定了其常规使用的寿命。然而,现有的理论,虽能证实一些金属材料可适用于大国重器,但难以快速准确预测这些材料的常规使用的寿命。重点是现有理论较难准确描述这些金属材料的屈服轨迹线日,中南大学教授丁发兴科研团队在《中国科学:技术科学》上发表研究论文,构建了平面应力状态下正交异性金属损伤比屈服理论,能快速准确预测不同取向角下各类正交异性金属材料的单轴屈服应力的变化规律。运用这一理论将能绘出多种金属材料“屈服”的轨迹线,从而进一步预测其使用寿命。
金属材料具有塑性、韧性、强度、延展性等力学性能。材料抵抗外力不发生屈服乃至断裂的能力叫强度;在外力作用下从屈服到断裂的过程中,先发生弹性变形后发生塑性变形,弹性变形即去掉外力后仍能恢复原状,塑性变形即去掉外力不能恢复到原状。
近年来,科学家研发出了慢慢的变多的新金属材料。镁合金、形状记忆合金等塑性材料主要用在航空航天领域。丁发兴团队研究之后发现,它们在平面应力状态下的屈服轨迹线有很特别的形状,如镁合金表现为鸡蛋圆形状,而形状记忆合金表现为土豆圆形状。
上为镁合金屈服轨迹线预测与实验比较图,下为形状记忆合金屈服轨迹线预测与实验比较图。受访者 供图
屈服准则又称塑性条件,是判断材料从弹性状态进入塑性状态的判据。也就是说,将镁合金等塑性材料从不同方向对其压缩或拉伸时,材料由硬变软所形成的轨迹线各不相同,具有各向正交异性的特征。研究其轨迹线对有效利用材料,并对构件做准确受力分析具备极其重大意义。而描述屈服轨迹线规律一直是力学界的难题。
最初,科研人员对金属材料屈服理论的探索与研究,主要是采用空气动力学家米塞斯(R.von Mises)于1913年提出的最大形状改变比能理论。
“米塞斯屈服理论提出后,大家都以为塑性材料的破坏过程及其屈服轨迹线描述格外的简单,认为金属材料从各个方向受拉和受压屈服强度都相等,属于各向同性的普通金属材料。”1948年,又有学者将各向异性引入米泽斯屈服准则,提出了基于唯象方法的正交异性金属材料屈服准则。丁发兴表示,从其团队的研究来看,当前既有的从宏观层面分析各向正交异性金属材料强度的理论,仅描述了金属材料破坏的现象和规律,难以揭示金属材料塑性破坏的机理,尚未上升到理论构建阶段。
丁发兴表示,也有学者从细观角度建立金属材料晶体学强度理论。该理论以塑性材料变形时晶粒的变形为研究目标,能追踪每个晶粒的晶格变化,对正交异性屈服轨迹线的描述能做到很准确,但要以晶粒织构等作为主要输入参数,模型庞大,形式复杂且计算时间过长而不具备大规模应用价值。
丁发兴科研团队一直在深耕工程材料强度理论基础研究。早在2006年,该团队就发现了损伤比参数,创立了工程材料损伤比强度理论。
该理论提出了一个高压条件下脆性材料向塑性转变的基本信息参数,适用于混凝土、岩石、铸铁等脆性材料和各向同性金属塑性材料的破坏机制分析,揭示了脆性材料受压体积膨胀、受拉体积收缩的破坏规律,是继1807年提出的弹性模量参数、1829年提出的泊松比参数之后的第三个基本信息参数,实现了脆性与塑性的统一。
正交各向异性指材料在互相垂直的两个方向上有不同的性能指标。比如一块钢板,从不同角度对其拉伸、压缩或者既拉伸又压缩的情况下,其性能都不一样。
借助损伤比强度理论,该团队基于金属材料弹性和塑性应变分解假设以及单元体相对耗能率极值计算模型,构建了平面应力状态下正交异性金属损伤比屈服理论。
“我们应用团队的正交异性金属材料损伤比强度理论发现,其中的4个损伤比参数可根据两个相互垂直方向的单独受拉和单独受压,以及双轴等压和双轴等拉等6个屈服应力实验数据唯一确定。这与以往的唯象强度理论和晶体学强度理论方法相比,既简单又精确高效。”丁发兴说。
“米塞斯屈服理论认为,不管施加多大的拉力或压力,材料各个方向受到的压力强度都相同,力学性能参数也是固定的。”丁发兴表示,其团队提出的理论可将塑性材料的性能指标相对化,从而获得损伤比参数。“我们得知,不同金属材料的强度指标和损伤比参数皆不相同,我们可通过测试和计算这些材料力学性能数据,从而绘出不一样的材料的屈服轨迹。”
丁发兴表示,借助其团队提出的新理论对各类金属材料来屈服轨迹分析,可使材料的利用更充分。“比如飞机发动机的缸体材料,我们大家可以先通过理论分析它在高温度高压力下的性能,有明确的目的性地选取优质金属材料从而改变材料强度等性能指标,使缸体材料可靠性更高、常规使用的寿命更长。”
据介绍,正交异性金属材料损伤比屈服理论除能描述镁合金和形状记忆合金的屈服轨迹线之外,超高强度钢、铝合金、钛合金和镍钼钨合金等合金材料的双轴屈服轨迹线也能用相同方法方便描述。它是对米塞斯屈服理论的无量纲化和升级,实现了正交异性与各向同性金属材料屈服理论的统一。
目前,该团队正在对石膏、玻璃、陶瓷等其他脆性材料以及复合材料的损伤比参数进行标定,并将损伤比强度理论推进至横观各向同性材料中。
论文审稿人认为,该成果将各向同性脆性材料的损伤比强度理论推广至正交异性金属材料的屈服理论研究中,得到了不同平面应力状态下正交异性金属的屈服准则表达式,并通过理论与试验结果的对比,验证了其有效性;提出了针对正交异性金属材料的二轴损伤比屈服理论,能够较好地预测一些金属材料屈服应力随取向角的变化以及双轴屈服应力曲线,有一定理论与工程实际意义。(王昊昊)
全国古树名木保护工作现场推进会25日在四川省广元市召开。记者在会上获悉,我国将每10年组织并且开展一次古树名木资源普查,适时开展补充调查,掌握资源底数和管理状况,对古树名木建档立卡。
国家航天局25日在京举行国家民用空间基础设施大气环境监视测定卫星、陆地ECO碳监测卫星的投入到正常的使用中仪式。这两颗卫星投入使用后,将对大气环境与陆地ECO开展监测,为建设美丽中国,有力应对全球气候平均状态随时间的变化,实现“双碳”目标提供重要的数据支撑。
在很多人看来,塑料是不能导电的。但实际上很多塑料也能导电,这种塑料被称为导电聚合物。科学家们发现,让这种导电聚合物薄膜出现温差,它就可以发电,这就是聚合物热电材料。
近日,中国科学院高能物理研究所牵头的科研团队,利用自主研制的极目空间望远镜和国际上的费米卫星伽马射线监测器的观测数据,在伽马暴中发现能量高达37兆电子伏的伽马射线谱线,且谱线的能量和光度均以幂律形式演化,这是迄今观测到的宇宙天体产生的能量最高、证据最确凿的谱线,为破解伽马暴及相对论性喷流产生之谜提供了全新的重要线
资料显示,龙卷风属于局地性、小尺度、突发性的强对流天气,是在极不稳定的天气状况下,空气对流运动造成的强烈、小范围空气涡旋。当龙卷风袭来,如果身处户外,要观察龙卷风动态,及时避开其行进路径;远离大树、电线杆、广告牌、高围墙等,以免被砸、被压。
如今,科技慢慢的变成了体育竞技不可或缺的一部分。它不仅提升了运动员的表现,丰富了观众的观赛体验,还促进了体育产业的升级和发展。
记者24日从中国科学院云南天文台获悉,由该台研究员张居甲领衔的国际合作团队,近期成功捕捉到超新星的爆炸激波冲破其外围致密星周物质的壮观瞬间。
不少人在体检后,报告提示幽门螺杆菌感染呼气试验阳性。“幽门螺杆菌(Hp),是一种螺旋形、微厌氧、对生长条件要求很苛刻的细菌,可生存于胃部及十二指肠的各区域内。柴宁莉说:“目前Hp感染主要是通过尿素呼气试验,也就是我们常说的C13呼气试验检测。
针对近年来网络诈骗手段快速翻新、迷惑性慢慢地加强、严重侵害公众财产安全与合法权益的现象,国家金融监督管理总局金融消费者权益保护局24日发布防范新型电信网络诈骗风险提示,提醒广大群众警惕花样翻新的骗局,增强风险防范意识和识别能力,守护好自己的“钱袋子”。 据介绍,新型电信网络诈骗最重要的包含:一是“共享屏幕”类诈骗。
农林植保、电力巡检等通航作业稳步增长;空中游览、航空运动等消费新业态加速涌现;应急救援、气象探测等无人机新场景接续推出;中国民航局有关负责的人介绍,近年来,民航局陆续出台《城市场景物流电动多旋翼无人驾驶航空器(轻小型)系统技术方面的要求》《城市场景轻小型无人驾驶航空器物流航线划设规范》等有关标准,助力城市轻小型无人机物流应用场景落地。
“这是世界首台(套)300兆瓦压缩空气储能电站,类似‘超级充电宝’,每天可储能8小时、释能5小时,全年发电量约5亿千瓦时。压缩空气储能具备大功率、长寿命、深调峰、易选址等特点,单机功率可实现数百兆瓦甚至吉瓦级的储能容量,寿命通常可达30年以上。
记者23日从中国科学院物理研究所获悉,我国科研团队在嫦娥五号月球样品中,发现了一种富含水分子和铵的未知矿物晶体——ULM-1。(中国科学院物理研究所供图)“与易挥发的水冰不同,ULM-1这种水合矿物非常稳定。
近年,人工智能、虚拟现实、超高清等新科技对视听行业产生着显著而深入的影响。
当前,科学技术进步催生了一大批智慧养老“黑科技”产品,引领智慧养老新潮流:一键通呼叫、智能等设备,为老年人提供实时健康监测等服务;护理机器人、家务机器人等产品,给老年人的日常生活起居带来了极大的便利;智能升降沙发、防走失定位鞋、气囊防摔衣等产品,让老年人的安全多一份保障……
明确到2025年底,全国数据中心整体上架率不低于60%,平均电能利用效率降至1.5以下,可再次生产的能源利用率年均增长10%等一系列目标。
这种传统评价模式忽视了学术评价的全面性和多样性,致使不少学生盲目追求论文发表速度,却牺牲了论文质量以及自身的综合研究能力提升。
我发现这个专项很适合我,因为我希望在研究生期间能够更多地参与实际工程建设项目,未来投身国家航天事业。面试时,评委中有来自企业的专家提了不少理论如何应用于工程的问题,回答起来并不是特别容易,让我印象深刻。
然而,唯论文、唯分数等陈旧的评价观念与评价模式对于学生拥抱这场学习的变革形成了显著制约,迫切地需要进一步深化教育评价制度改革与创新。